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A generalized dynamical theory has been developed that extends previous models of x-ray diffraction from
crystals and multilayers with vertical strains to the cases of grazing incidence and/or exit below the critical
angle for total specular reflection. This provides a common description for extremely asymmetric diffraction,
surface("grazing-incidence’), and grazing Bragg-Laue diffraction, thus providing opportunities for the appli-
cations of grazing geometries to the studies of thin multilayers. The solution, obtained in the form of recursion
formulas for(2x 2) scattering matrices for each individual layer, eliminates possible divergences(@btdg
transfer-matrix algorithm developed previously. For nongrazing x-ray diffraction in the Bragg geometry and
for grazing-incidence x-ray specular reflection out of the Bragg diffraction conditions, the matrices are reduced
to scalars and the recursion formulas become equivalent to the earlier recursion formulas byeBattpista
Cryst. A42, 539(1986] and ParratiPhys. Rev95, 359(1954], respectively. The theory has been confirmed
by an extremely asymmetric x-ray-diffraction experiment with a strained AlAs/GaAs superlattice carried out at
HASYLAB. A solution to the difficulties due to dispersion encountered in extremely asymmetric diffraction
measurements has been demonstrated. Finally, the validity of Ewald’s expansion for thin layers and the relation
of the matrix method to the Darwin theory, as well as the structure of x-ray standing waves in multilayers are
discussed[S0163-182808)05408-3

[. INTRODUCTION in studies of semiconductor crystal surface structures, includ-
ing diffusion-induced, ion-implanted, and epitaxial layers
In recent years x-ray diffraction schemes with grazing in-and multilayers, oxidized, etched, and corrugated surfaces,
cidence and/or exit angles have attracted particular interestc. (see Refs. 26—37, Refs. 15,38-51, and Refs. 52-54 for
because of their advantages in the studies of very thin surfadeAD, GID, and GBL, respectively However, these studies
layers of crystald=® Due to the total external reflection ef- also indicated the lack of a general diffraction model for the
fect for grazing x rays, the x-ray penetration inside crystals issarious grazing geometries.
reduced from the micrometer range down to a few nano- X-ray diffraction at grazing incidence and/or exit can be
meters, thus providing the possibility of studying surfacetreated with the help of either an extended kinematical theory
structures with atomic depth resolution. (often called the “distorted wave Born
Grazing geometries can be classified into three majompproximation’),16:1°414955 or  extended  dynamical
types (Fig. 1): (i) The coplanar extremely asymmetric dif- theory>®891114.17.2245485156-4th, approaches take into
fraction (EAD) is realized when the diffraction planes make account refraction and specular reflection effects for grazing
the Bragg angle with the crystal surface and either the incix rays at crystal surfaces and interfaces. As with ordinary
dent or exit x-ray wave is grazimgl? (i) Surface or Bragg diffraction, the kinematical theory is applicable to mo-
“grazing-incidence” diffractio® (GID) is the geometry saic crystals, to the tails of the Bragg peaks, and to the dif-
where the Bragg planes are perpendicular to the surface arichction from layers thinner than the x-ray extinction depth.
both the x-ray waves are grazifj:?: (iii) Finally, grazing This depth decreases to about 10 ML under total external
Bragg-Laue diffractionGBL) is a combination of the EAD reflection conditions for grazing x rays. The application of
and GID. It involves the diffraction from atomic planes in- the perturbation(kinematical theory to the above-listed
clined at a small angle to the crystal surface normal, so thatases is possible due to a small intensity of diffracted x rays.
the reciprocal lattice vector points outside the crystal at fewOtherwise the dynamical theory must be applied, which
degrees to the surface. It is then possible to choose asymmeskes into account comparable intensities of incident and dif-
ric diffraction with either grazing incidence or grazing exit fracted waves and their multiple rescattering into each other.
by a small variation in the incidence angle or even to switch Improvement in the dynamical theory is demanded by the
between these two cases within one diffractionsteadily improving quality and increasing complexity of
experiment*?® semiconductor heterostructures. However, the majority of
All three geometries have found widespread applicatiortheoretical studies have been concerned with perfect crystals
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h x-ray wave fields in an infinite crystal, whose applicability to
Kp (a)

thin layers must be established. The aim of the present paper
is to reformulate the matrix dynamical theory in a recursion
matrix (RM) form that overcomes the numerical problems of
the TM formulation, and to provide an experimental check to
the Ewald expansion for thin strained multilayers.

In Sec. Il the (4x 4) transfer matrix theof?°%>%f x-ray
diffraction from multilayers is outlined, and in Sec. Ill pos-
sible numerical problems are demonstrated and explained.

In Sec. IV the theory is reformulated in terms of recursion
(b) formulas for (2X2) matrices for individual layers. It is

shown how this approach overcomes the numerical problems
; of the (4x4) TM algorithm. In Sec. V the reduction of the
h/ matrix recursion formulas to the scalar recursion formulas by
7 Parratt® and Bartels, Hornstra and Lob&&ks demonstrated
|

A\ Bragg planes P=~Op

Kn Ky

D,

Ko O for x-ray grazing incidence far from the Bragg diffraction

condition and for Bragg diffraction with no grazing waves.

LT lZB LI LT T In Sec. VI the recursion matrix theory is verified with the

ragg planes

help of the double-crystal EAD measurements taken from a
strained AlAs/GaAs superlatticgSL) with known structure
parameters.
(c) In Sec. VII the results of recursion matrix calculations are
compared to those given by the Darwin theory applied to
heterostructure diffractiof. In contrast to our approach, the
Darwin theory does not contain Ewald’s expansion and di-
rectly sums x-ray scattering of atomic planes. It is shown that
in the case of ordinary Bragg diffraction the results of both
[ ] / [ ] ] A éraég p/lanés [ [] 4) theories coinci.de. Further compari;ons require an e:xten;ion
of the Darwin theory to grazing angles, which is
FIG. 1. Diffraction geometries with x-ray grazing incidence forthcor_nmg?G_In Sec.‘ IX. the structure of x-ray standing
and/or exit.(a) coplanar extremely asymmetric diffractiégrazing- ~ Wa&ves In multllaye_rs IS dlscusse(_j.
incidence case (b) grazing-incidence diffraction, angt) grazing ~ We conclude with some possible uses and further exten-
Bragg-Laue diffraction. Vectorsg, , and «, denote incident, Sions of the recursion matrix theory.
specularly reflected, and diffracted waves, respectivelys the
reciprocal lattice vector corresponding to the Bragg plades,
®,,, ande are the angles ok,, x;,, andh, respectively, with the Il. (4x4) MATRIX THEORY OF MULTILAYER
surface;fg is the Bragg angle. DIEFERACTION

i

or with greatly simplified models of defect crystals. The Let us consider x-ray Bragg diffraction in one of the ge-
problem is that the diffraction from strained crystals in theometries presented in Fig. 1. The crystal is assumed to be a
case of grazing incidence/exit cannot be analyzed within th&ultilayer consisting of a stack &f perfect crystalline lay-
standard Takagi-Taupin approa®®! which is based on the €rs with laterally matched lattice spacing. We allow each
assumption that the x-ray wave-field amplitudes vary slowlylayer to possess its own lattice spaciagjin the direction

at interatomic distances so that their second derivatives camormal to the surfacea)=a,+Aa), where|Aa)|<a,, and

be neglected. A new general theory applicable to x-ray difn is the layer index numbered from the surface of the stack.
fraction with grazing incidence and/or exit was constructedThis model corresponds to a so-called unrelaxed multilayer
in a (4x4) matrix form?#>48:51%6-59|n Refs. 56 and 57 the containing no misfit dislocations. Methods to extend this
rank of matrices was 8 8 becauser- and 7-x-ray polariza- model to multilayers with misfits are briefly discussed in the
tions were treated togethgiThe two different formulations Conclusions(this problem is not completely solved yeA
discussed in these papers, i.e., the differential matripossibility of crystal curvature as a result of strdiris also

equation2®®’ and the algebraic equations for transferdisregarded. That is, we assume that either the multilayer is
matricest>°148589re essentially equivalent. The former thin enough or the substrate is thick enough to ignore curva-

approach is more convenient for continuous strain profiles irture.

crystals, while the latter one is superior for multilayers. This Those structures that contain additional amorphous layers
transfer matrix(TM) technique is similar to the (22) ma-  are not considered here for the reason of simplicity, although
trix solution for grazing incidence x-ray specular reflectionthey can be readily included in the mod&P8 For the same

of multilayers found by Abele® reason, we neglect possible changes in x-ray polarization,

Unfortunately, both the differential and algebraic versionswhich may occur due to the refraction effects in GID and

of the (4X4) matrix technique may suffer from serious nu- GBL. The intermixing ofc and 7 polarizations was taken
merical problems in their computer implementation. In addi-into consideration, for example, in Refs. 56 and 57, but this
tion, the TM theory makes use of Ewald’s expansion foreffect is shown to be sméif. Our derivations below are car-
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ried out for o polarization. The equations can be extendedray diffraction experiments, since=1 is usually not ac-
for 7 polarization by incorporating cosfg) in the x-ray cessed experimentally because of low reflectivity on the far
susceptibilitiesy,, and i tails of Bragg peaks. Thus, the range=1 is outside the

When Bragg diffraction from atomic planes in a ML with scope of our study. For those interested in possible exten-
variableal is considered, the reciprocal vectyy associated sions of the theory taw=1 (so-called asymptotic Bragg
with the atomic planes in theth layer slightly differs from  diffraction,”® or crystal truncation rod scatterifry the solu-
the mean vectoh because of the deviation of the normal tion to Eq.(3) and the corrections to boundary conditions at
lattice spacing in the layer:h,=h+Ah,,Z, where largea were obtained by Catich&.In addition, as shown by
|Ah,/<h, andZ is a unit vector along the internal surface Colella” the cases withw=1 may require analysis in the
normal. We assume the local crystal dielectric susceptibilityframework of multiple Bragg diffraction theory, since the
in each layer to have the same periodicity asltioal atomic ~ two-wave approximatioril) and(2) may become invalid.
planes spacing in the layer: The conditionkﬁ=x§ presuming the elastic scattering of

x rays gives®
Xn(r):X8+XE eihn-(r—rn)+i¢n+XE_e—ihn-(r—rn)—i¢n, (l)
n n

o _ , Vo= (vt )2 —a, (5)
where the beginning of coordinateg is taken at the upper o ) ] )
layer interface, and the initial phage, will be chosen later. EQ. (5) implies that the exit angle of a grazing diffracted

For small strains the Fourier coefficieng , x;- can be set Wave does not depend on vertical strains. _
n n The values ofu,, are determined by the dispersion equa-

- i on N : . 1o » . .
equal to the Fourier coefficientgy, x,- of unstrained tjon, which is the condition for the existence of a solution of

crystal® Egs. (4):
Following the standard Ewald approach to dynamical dif-
fraction theory, we expand the x-ray wave field in each layer (Un?= Y= xO[(Un+ ) > = Ya—x01=xp-xh . (6)

over the sum of the transmitted and diffracted Bloch waves

with wave vectorsky, and ky,=ko,+h,, and amplitudes Equation(6) is a fourth-degree polynomial equation fof;

Do andDy,, respectively’®="* and has therefore four roots. As shown in Ref. 24, there are
always two roots corresponding to x-ray waves with ampli-
tudes damping out witlz [Im(u,,)>0], and two other roots
corresponding to the waves with amplitudes growing veith
le(un)<0]. The latter waves are usually treated as being
specularly reflected from the lower interfaces of the layers.
We shall assume that the roats are sorted over descending
Im(ul)), so thatj = 3,4 correspond to the reflected waves. For
each of the solutions Eq#}) give (j=1,...,4)

Dn(r):eikon.r[DOn""Dhneihn'(r_rn)ﬂd)n]- 2

Under the expansiond) and(2), the amplitude®, and
D, can be treated as constants satisfying the dynamical di
fraction equations in each layer:

2
— K
%DOn:XBDOn"_XEnDhn:
On (3)
K3, — 2 i i Dly=viDby, vh=[(U)*~ %~ XeVxf. (@
2 Dpn=Xn Pont XxoPmn>
hn Proceeding to the boundary conditions at multilayer inter-
wherex, and k;, are the values of the incident and diffracted faces, one must choose the parametgfsin a way that
wave vectors in vacuum, respectivébee Fig. 1 provides a continuous phase of the waves in Efjsand(2).
The lateral components of all vectdeg, andk,,, coincide  This is provided by the following choice which does not
because they remain unchanged at refraction and speculaffect Eqs.(3)—(7):
reflection. Then, Eqs(3) can be expressed in terms of the
normal wave-vector components, which are determined by LU
the incidence and exit angles(see Fig. L ¢n=k21 hzk(zk_zk)szl hadti, 8
Ko,= Kk SIN®g=k7yy, Kn~=k SIN®O,=ky,. h,=«ki, - -
=kiy(1—Aay/a), wherey=h-Z/k=—2 singsinds. Mak-  wheret, are the thicknesses of the layers afld denote the
ing these substitutio$ and introducing the dimensionless coordinates of the upper and lower interfacef=z:_,.

n—-1 n-1

complex parameters, =Ko/« we arrive at”’® With the substitution of Eq(8), the exponents in the expan-

(U= %~ Xx0)Don= Xp Dn. sions(1) and (2) become identical ta- [3h,(z)dz; they can

" (4) also be presented in a more usual notatioompare with
[(Un+¢n)2_7ﬁ_X8]Dhn:X2nDOn- Ref. 60:
-1

The transition from Eq(3) to (4) makes use of the assump- U " _ z
tion that the difference betweeky,, Kn,, and ko=« is hzn(Z—Zn)JrkZ:l hat=h.z+ OAhz(Z)dZ
small, so that the former two can be replaced dyn the
denominators at the left side of E). This is the typical _ zAa,(z)
approximation used in most x-ray diffraction theories. It is =hz=h, o a dz

valid at small deviations from the Bragg condition,
a=(2x-h+h?)/k?<1, which is well justified for most x- =h,z—h,u(z), 9
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whereu(z) is the function representing the displacement of lll. NUMERICAL PROBLEMS WITH THE DIRECT  (4x4)
atoms from their positions in the Takagi-Taupin theory. MATRIX SOLUTION
Equation(1) with ¢, given by Eq.(8) is equivalent to the
expansiogos of the susceptibiligy(r) of strained crystals used
by Takagr- and, in fact, in the Darwin-like theory of hetero- : . L .
S'E;uctureg diffractior?® It does not contain app?/oximations of (_13)' This - product dlverge_s for an infinitely thick
about slow variations of(r) at interatomic distances. As to mP't"aYef due to th? accumulat|o.n of large exponent; con-
expansior(2), its validity will be discussed in Secs. vi-vii, t@inéd inFy. In practical compult?tlons, the loss of precision
The boundary conditions for grazing waves need to bd" @dding big numbers exp(u;“xt,) and small numbers
formulated not only for x-ray amplitudes, but also for their €Xp(-iuy“xt,) happens when the multilayer thickness is
derivatives, which corresponds to accounting for x-ray re-greater than the x-ray extinction depth inside a crystal. As is
fraction and specular reflection effeéfs:”?>The transmitted ~Well known, the x-ray extinction depth at grazing angles can
and diffracted wave field of each layer are matched to thos8€ as small as a few nanometers, so numerical problems may
of the upper and lower adjacent layers. The wave fields in tharise for quite thin structures.
surface layer are matched at the surface to the following A previous solution to the numerical problems was as
vacuum x-ray field which consists of incident, specularly re-follows>®“® Successively calculating the matrix product in
flected, and diffracted waves with the amplitudes, Es, Eqg. (13) from the left to the right, one is traveling from the

One of the key steps of the dire@x 4) matrix solution
(13) is the calculation of the matrix product at the right hand

andE,, respectively(see Fig. 1 crystal surface towards the deeper layers. If the matrix prod-
uct becomes great at some layer, it indicates that the x-ray
E,(r) = e\ 0 [ Eggi <0702 + E g~ 1 K0¥0% 4+ E, @~ I Komz+ihy-r], waves in this layer are very weak and the contributiol\to

(10) coming from the layer's lower interface and from all the

underlying layers can be neglected. Then, the overflow is

The boundary conditions provide four equations for the@Vercome since the matrix product is truncated at the upper
x-ray amplitudes at each interface, which can be formulate@@'t of the multilayer. This idea is well understood for a

i ; 148,58, f | f Il ivi i Itil . Then,
in the (4x 4) matrix form 5485859 gﬁrlgct c_rylsta ormally sm_de|V|ded |_nto mu tilayers en
k Sk+1=1 and the matrix product is the inverted absorp-

S,8,=8,D;, tion factor of x-ray wavesE,F,...F,=[F]1,

The above-described procedure is equivalent to the usual
thick crystal approximatiofTCA) widely used in the dy-
namical diffraction theory®~"* That is, the solutions of the
dispersion equation corresponding to the waves growing

. with z [Im(u,)<0] are disregarded for thick crystal plate.
However, as soon as the x-ray extinction strongly depends
SN—lﬁNLlle—l:SNﬁNU)DNv on the grazing diffraction angles, the number of layers taken
into consideration may vary across a diffraction curve, so
Here &,= (Eo=1,0E,,E,,) andD,= (D(l)n’ D(z)n, Dgn, Dén) fthat the grazing-case TCA is _dynamical. Essentially the same
are the four-component vectors, afig, S,,, and 7, are the idea to overcome the nd%mencal .problerns was suggested by
characteristic (44) matrices of the layers: Berr:_aman anql Magcran Ffor _the_|r matr|x_d|ffer_ent|al di-
fraction equations of grazing-incidence diffraction.
The application of the dynamical TCA to the transfer ma-

SIFID =8P D, (12)

10 1 0 1 11 trix method provided a successful interpretation to the

0 1 © 1 vl v vd o grazing-incidence diffraction measurements of strained

S= 0o — 0 Sn=| 1 2 3 a4l superlattice4® However, we have found some cases where

Yo Yo Un Un Un U TCA is unable to avoid numerical failures.

O w 0 - whow?2owdowp The problem is that the four different x-ray wave modes
(12 (D, D2, D2, DY) are characterized by different extinction

L oD i lengths i.nsi.de a crystal anq may set different gon(_jitigns for

[FRYYT; =6y exdiulez™], andwh=vl(ul+ ). TCA. This is clearly seen in the case of grazing-incidence
A direct formal solution to Eqs(11) is diffraction [Fig. 1(a)]. In the GID conditions, the dispersion

equation(6) always gives a Borrmann wave fieﬁ with
=S S IF 1S ISF, . St SWAY Dy, (13)  wave nodes between the diffraction planes and weak absorp-
_ tion, and an anti-Borrmann wave fiel? with wave nodes
where )i =[F(F) 1= 8 exp(iulxt). After  on the diffraction planes and strong absorpfi&2 Since the
calculating the matrix product on the right hand of Et8)  Borrmann and anti-Borrmann modes are characterized by a
and taking into account that the amplitudes of the wavestrong and a weak interaction with crystal matter, they pos-
reflected from the lower interface of a thick substrate layersess different critical angles for total external reflection,
are zero D3y=Dgy=0), one arrives at four linear equations which are lower and higher, respectively, than the usual criti-
for four unknown amplitudeskg, Eq, DéN, and DSN. The cal angle® .= (xo)Y2 At the exact Bragg positiona(=0)
other amplitudes are given by E€L1). This is the transfer the critical angles aré ‘1’1,2:(X01Xh)1/2, and for the gen-
matrix solution to the diffraction problem, as suggested ineral case the angular areas for total external reflection are
Refs. 48, 58, and 59. shown by the hatched patterns | and Il in Figg)2 The wave
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FIG. 3. An example of numerical problems that occur with the
transfer matrix method. The calculations are f@20) grazing-
incidence diffraction of Cu k- radiation and an AlAs/GaAs super-
lattice [20 periods of 73 A GaAs and 154 A AlAs di001) GaAs
substrat¢ The scan is calculated at=0 and corresponds to the
diagonal in Fig. 2a). The dotted line and the thin solid line {a)
show the GID reflectivity calculated by the TM method with the
10" and 18° thresholds of the maximum matrix element, respec-
tively (the curves are shifted by 0.3 for clarity). Respective lines
in (b) show the number of the top layers in the multilayer taken into
account in the calculations. The calculations for different thresholds
disagree with each other and with the recursion matrix calculations
[thick solid line in(a)] in the gap between the two critical angles for
total external reflection® ; <®,<d,).

1.0

1.5
D, (deg)

FIG. 2. The angular areas of total external reflection @@r
grazing-incidence x-ray diffraction ar)) grazing Bragg-Laue dif-
fraction (p=—1.6°). The calculations are fd220 reflection of
Cu Ke; radiation from GaAs crystal. Areas denoted 0, I, and Il interfaces: the anti-Borrmann waves are excited in deep lay-
correspond to the total reflection for none, one, and two wave fieldgers by the Borrmann waves.
in thick crystal, respectivelyd, is the incidence angle and,, is An illustration to this problem is given in Fig. 3 f¢220
the exit angle of diffracted waveb.=(xo)"” is the critical angle  GID of an AlAs/GaAs superlattice consisting of 20 periods
for total reflection in the absence of the Bragg diffraction, of 73 A GaAs and 154 A AlAs 01i001) GaAs substrate. The
@, ;= (xoT xr)"* are the critical angles for GID introduced in Ref. youed and thin solid lines in Fig.(8 show the reflectivity
14. curves of GID calculated by the TM method with the TCA

applied when the maximum element of the matrix product is
fields D2 and D with Im(u)<O0 are also Borrmann and 10 and 165, respectively. The same lines in pén) of the
anti-Borrmann modes, and the total reflection areas for thesfigure show how many layers out of a total of 41 are taken
modes coincide with that of the modes 1 and 2, respectivelyinto account. The curves are plotted as a function of the
The same consideration is applicable to the grazing Braggncidence angle ak¥=0. This is the scan along the diagonal
Laue diffraction[see Fig. 2b)] and to the EAD. in Fig. 2(a). The reflectivity curves with different TCA con-

The TCA procedure works well for the areas 0 and Il inditions coincide atb,<®,, where all the x-ray waves are
Fig. 2 where either none or all of the waves are stronglytotally reflected and atb,>®,, where nothing is totally
absorbed. In the area(in the gap between the two critical reflected. However, they differ in the gap between the two
angles the extinction(the penetration depthfor the anti-  critical angles where the anti-Borrmann waves are reflected
Borrmann and Borrmann modes may be of the order éf 10and the Borrmann ones are not. This proves that the TCA
A and 16 A, respectively. As a result of this great difference procedure is not applicable in this range.
by three orders, the anti-Borrmann mode may give large ex- The TCA thresholds used in the above example are the
ponents in Eq.(13) and require the TCA at a few layers, maximum ones achievable with a double-precisioRTRAN
while the Borrmann mode would require taking into accountprogram where the mantissa is 16 decimal digits. Performing
diffraction in the whole multilayer. One cannot use separate&computations with a longer mantissa may overcome the loss
thick crystal approximations for different wave modes be-of precision in some cases, but cannot solve the problem in
cause they are coupled via the boundary conditions at thprinciple.
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Ro=(Es,Ey}), respectively. Also, the waves at the right hand
Ro of Eq. (15) can be viewed as two transmittgin(u®>?>0]
and two incident wavedm(u®%<0]. The amplitudes of the
latter waves coming to the surface from the crystal interior
are zero in thick crystals, but we keep them for the general
case where crystals have internal interfaces. Thus, we group
the waves below the surface as the veciiors (D(l) , Dg) and
R,=(D3,Dj), respectively. Splitting matrice¥ andF into
four (2X2) blocks we obtain

Ty Xt XM\ F, 0\(T,
= rt rr ! (16)
Ro X" X 0 F_/\Ry
whereF, andF_ are diagonal matrices containing the in-
creasing and decreasing exponential functions, respectively.

(a) (b) Equation(16) enables the “scattered” wave®, and T,
to be expressed via the “incident” wavdg andR;:

_(Mtt Mtr)(-ro)
- Ml’t Mrr Rl ’ (17)

(incident wave) (incident wave)

> i
}‘ ,’R( incident wave)
1

1

& sofepinp

FIG. 4. On the derivation of matrix recursion equations for x-ray
diffraction in cases of single heterostructeg and multilayer(b). T,
T, andR, denote the two-component vectors containing the ampli- R
tudes of transmitted and reflected waves, respectively. 0

where
Thus, the matrix technique must be reformulated in order

to overcome the divergences. M= (F) "X,

Mtr: _Mttxtl’F—’
IV. RECURSION (2% 2) MATRIX FORMULAS
FOR MULTILAYER DIFFRACTION M™=X"(X") 7, (18
In the following consideration we make use of the ap- M = (XT—M"XT)F .

proach developed by Kolihfor nongrazing x-ray diffraction

with multiple Bragg- and Laue-case x-ray waves in multilay-  Equations(18) have a clear physical interpretation. For
ers. The Bragg- and Laue-case x rays in that problem can bgample, the block™ is responsible for the scattering of
viewed as being analogous to the transmitted and reflected, into R, and the last line in Eq(18) implies that the
waves in our problem. The basic idea by Kohn is that Eqscattering may be a direct transmissRp— R, and may be
(13) diverges because the vacuum amplitudgsre sought 5 multiple scattering proces®;— To— T;—R,. We note
together with the substrate amplitudBg . The former am-  that Eqs(17) and(18) do not cause any divergences because
plitudes are of the order of 1, while the latter ones can bghe increasing exponentials™ are inverted. In the case of a
reflectivity of a multilayer containingi+1 interfaces via R — T,

that of a multilayer witn interfaces. Such a recursion must " proceeding to multilayergFig. 4(b)], the solutions of the
converge because the effect of additional lower interfaces 08cattering problem for multilayers incorporatingnterfaces
the reflectivity decreases with the distance of the interfacegngn+ 1 interfaces according to E¢L3) can be presented

from the surface. as
We start with the following renormalization of the x-ray
amplitudes®® (Tn) (W;t A (To
= , 19
Di=FYp,, (14) Ro/ \wy wy Rn) (19
and denotingX,,,;=3S,, 'S, 1. Then, all equation$l1) as- and
sume the universal forrthere and below the primes R, tt tr
are left Oul' (Tn+l) (Wn+l Wn+l < TO
' = : (20)
Ro W[lt+1 WH+1 Rn+1
Dn=Xn+1Fn+1DPn+1,n=0,...N—1. (15

respectively. Her&V, andW,,,, are (2X2) matrices. At the
The amplitudesD,, are constant within the layers and S@me time, according to E¢L7) the scattering equations for
change at the interfaces. Therefore, the interfaces can pgterface 0+1) are

treated as “scatterers” for amplitudes. First, let us consider Mt MU
the scattering at a single interface. For clarity we discuss the Tn+l) _| "t n+1 ( Th ) 21)
crystal surfac¢Fig. 4@)], but our consideration is applicable Rn ML, ML \Rasa

to any internal interface as well. The waves at the left hand
of Eq. (15 can be classified as two incident and two scat- The combination of Eq9.19)—(21) results in the follow-

tered waves. We group them in the vectdgs=(Ey,0) and  ing recursion formulas fow, :
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WH =AW persion equation, the order of which is reduced to 2. The
W = MY AWM poundary conditions Eq11) and Eq'.(13) formally remain
n+l™ Tkl E ST Hint 1 (22)  in the same form, but all the matrices are nowx(2). In

articular, the scattering matricés andS,, are reduced to
Wi 1 =Wy +B,M Wy, P J & "

1 1 ) 1 1
oo rr S, = , S,= 2
n+1 Bn n+1: \Y Yo — %o n U% Uﬁ ( 5)
where it is denoted

_ and forX,,,; andM}* , we find

An=Maa(1-WiM )™ (23 n h + -
Wi ot -1 Qnn+1 B+t

By=WT(1-M", W)L, Xoor=| , (26)

8nn+1 arT,n+1
Starting with the crystal surface and progressively apply-

ing Egs.(22) to lower interfaces, one arrives at the matrices My 1= Tnns1 XE(—iUn 1Kty 1),
wyY dgtermining the reflectiyity of the whole multilayer. 'The MY =T s 1n €XE(— 2iUp, 1Kty 1),
recursion matrix(RM) solution does not cause any diver- (27)

gences in the numerical calculations. As follows from Eq.
(18), the order oM " is about 1, while the other three blocks
are small due to the factos™ and F*) . According to M, 1= Tni1n €XP(—iUpy1ktngy).

Eq. (22), the same ratio of orders is preserved for the blocks . '

WX, Thus, the blockW!! is the only one significant for a Heré apn.1=(Up*Un;1)/2u,. The parametersr,,,

thick multilayer and the solution to the diffraction problem is = 2Un/(Un+Un+1) @nd rpna= (Up—Uni1)/(UntUnyy)
RoZWﬁTo- The other blocks converge to zero at the recur-2r€ the Fresnel transmission and reflection coefficients, re-
sions(22). spectively, for the wave incident on the interface from layer

The thick solid line on Fig. &) shows the GID reflectiv- N n+1n @NdTny1, are those for the wave incident on the
ity calculated by the RM method for the example discussednterface from layen+1. _
in the previous section. The RM calculation coincides with ~ 1hus, for specular reflection the recursion formu(ag)
the transfer matrix results in angular areas Il and 0. In area Pecome scalar, but they do égot have exactly the same form as
there is a disagreement, because the TM method fails. Hovparrait's recursion formulds. The difference is that our
ever, when the TCA threshold in the transfer matrix calcula-€duations express the reflectivity of a multilayer consisting
tions is increased, the mismatch between the two methodf N+ 1 interfaces via that afi interfaces and the reflectivity
decreases. A complete coincidence would be achieved if on@? (n+1)th layer, while the Parratt equations connect the

had a computer with a hypothetically unlimited number offatio P,=R,/T, with the respective rati®,, in the next
significant digits. layer. The two types of equations are equivalent and can be

Finally, let us find the x-ray wave-field amplitudBs and reduced to each other. For example, the easiest way to obtain
T, inside the layers. These are required for the interpretatiof® Parratt recursion formulas is to use Erp):
of x-ray standing wavés$ and diffuse scatteringin diffrac-

o _
Mn+l_rn,n+1a

ton from  multilayers.  Equation (19  gives :X:wt+1+X”+1FE+1(F:+1)_1Pn+1 29
Ry=W'T,+W/'R,. However, the direct solution XU X F (F) P
Re= (W) "L(Ry—W!'T,) leads to uncertainties like 0/0 for o o Yy _
thick multilayers and one has to make use of recursions. Aubstituting the explicit form oK™ we arrive at
combination of Eqs(19) and(21) brings i
r + P, e 2lUntaktyg
— 1_Mft Wr -1 Mrr +Mft WtT , _ nn+1 n+1
Ry=( nt1Wa) (Mg Ras 1+ M Wi To) ” Pn 14100t 1Pns 18X —2iUp 1kt 1)’ @9

To=WpTo+ Wy Ry wherer , .., is the Fresnel reflectivity defined above. Equa-
tion (29) is the same as the Parratt recursion equation with
the only difference that we define,=R,/T, at the lower
layer interface, while Parratt used the definition at the middle
of layers. In the general case whd®g and T, are not sca-
lars, the Parratt method is not applicable, while the recursion
equationg22) remain valid.

Equationg24) must be progressively applied to all the layers
starting at the crystal substrate whétg=0.

V. REDUCTION TO SCALAR RECURSIONS
IN PARTICULAR CASES

A. Reduction to Parratt’s formulas far
from the Bragg diffraction B. Reduction to Bartels’ formulas

When the grazing x rays are far away from the Bragg for nongrazing Bragg diffraction

conditions, the x-ray wave field above the surface is reduced When x rays satisfy the Bragg condition and the incident
to the incidente, and speculaEg waves only, and the field and exit angles are not small, one can neglect the specular
in each layer consists of one transmit@fand one reflected x-ray waves. Then, only those solution# to the dispersion

D2 wave with the wave vectorky®= (= ku,,x;), respec- equation(6) are significant, for which the waves inside crys-
tively. Here+u,= = (y3+ x0) 2 are the solutions to the dis- tal only slightly deviate from the waves in vacuun};~ yq,
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or uL+ Yo~—vn. After discarding unimportant roots and In order to give an experime_ntal verification to our theory_,
proceeding from the large parametersto the small refrac- We have carried out symmetric and extremely asymmetric
tion correctionss,=u,— (va+ x3)¥2 in Bragg diffraction, Bragg diffraction measurements of an AlAs/GaAs superlat-
Eq. (6) is reduced to the following second-degreet'ce- The sample was a 20-period AlAs/GaAs superlattlg:e
polynomial®® grown on a_(lOO) GaAs substrate by molecular-beam epi-
taxy. The thickness of the layers was 154 A AlAs and 73 A

- XlXE GaAs, and the interface roughness was 4 A, as found by
s (s _ ﬁ) + B -0 (30) fitting grazing-incidence x-ray specular reflection data of the
T 2v)  Avovn sample. The multilayer thickness was far below the critical

- n n ) thickness for the strain relaxation and formation of misfit
Here an= a—(xo+2vo0ynda;/a)(1+B)/B is the param- jsjocations. The absence of relaxation was confirmed by the
eter determining the deviation of x-rays from the Bragg con-measurements of symmetric 400 Bragg reflectisee be-
dition in layern, and 8= v,/ vy is the asymmetry factor of |ow) and asymmetric x-ray topograplithe latter are not

the reflection. The roots of E¢30) are the well-known so-  shown herg Also, no noticeable sample curvature was
lutions of the dynamical diffraction theory: found.

- The measurements of the superlattice can provide a good
(XﬁnXh 5 test for the assumption concerning the periodicity of x-ray
Sn=—— (" YnEVYn— 1), (3D waves. First, the layers in the SL are as thin as a few mono-
2(vovn) layers and, second, a possible deviation of the real wave field

~ _1p from the theory will be accumulated in a resonant way at the

_ anp (32) SL peaks.

2( X%Xﬂ yv2' The symmetric 400 Bragg diffraction measurements were
o taken in the laboratory using a Philips materials research

As soon as the refraction and specular reflection effectgiffraCtomEter(MRD) and CuK,, radiation fran a 2 kW

are small, the boundary conditions can be formulated for Tay tube monochromatized by a GQZO)_ Ba_rtels-t_ype
x-ray wave amplitudes only, and the solution to themonochromator. The extremely asymmetric diffraction ex-

multilayer diffraction problem is obtained in the general periment was carried out at the CE.MO beamline of HAS.Y'
form (13) with (2X2) scattering matrices. In this case the LAB, DESY. An (n, —n) nondispersive Setup was used with
explicit form of S, and S, is a Ge double-crystal monochromai((xymmetnc_Sll reflec-
tion) and coplanar asymmetric 311 reflection from the
(1 0) ( 1 1) sample. The asymmetry of the sample Bragg reflection was
v ’ n ’

112
)

Yn=

(33)  varied by changing the x-ray energy around 8.5 keV.
0 1 All the data were simulated with the help of the theory
presented in Sec. IV. The experimental angles are introduced
tedious. into the theory as follows® let a be a unit vector along the

The important practical result is that the recursion formu-CryStaI scan axis. Wh en the crystal |sBrot§ted_r0ﬂMurough
las (22) become scalar. Again, as in the case of the specula"i"n angleso, .the ongmall wave vectok, satisfying the e.xact
reflection problem, our recursion formulas differ from that Br@gg condition ¢=0) is changed by a vectof, which
by Bartels, Hornstra, and Lobefkwho used the recursions €a" be expandgd |r_1to the two mutually_perpendlcular vectors
for P,=R.,/T,. However, the two types of equations are ¢ @ndDb, both lying in the plane of rotation:
equivalent and the formulas by Bartels, Hornstra, and _
Lobeek can be obtained using EG@8). Sr=xctyb, (34
In extremely.asymr_netric Br{;\gg diffraction where only bZIJS—(:JS-a)a, c=[:cg><a]. (35)
one x-ray wave is grazing, the dispersion equat®)rcan be
reduced to a third-order polynomial with three rodt$low-  Then, the conditionsx=2b sin(s6/2) and (Kg'+ 5K)>=K?
ever, some of the matrices in E®2) then become (1) give
rectangular. The way to handle rectangular matrices in recur- ) .
sion formulas was discussed by Kofthwho solved this x=(b/c)sin(86), y=—2sirk(56/2). (39
problem for multiple Bragg diffraction with no grazing x
rays in multilayers.

1.2
vn vn

and the calculation oX,,,; andM}Y,; is straightforward, but

As soon asik is found, we can calculate= 2 (Sk-h)/ «?
andyy,= y§+ (8K Z)/ k. The value ofy, is given by Eq(5).
Unlike usual Bragg diffraction, accounting for the variations
in yo and vy, during scans is absolutely necessary in grazing

Ewald’s expansioli2), the starting point of our method, is geometries because these parameters may change signifi-
obviously valid for thick layer§mathematically—for an in- cantly.
finite crysta), while for thin layers composed of a few  For coplanar geometriesat[x5xh]) and small scan
atomic planes, a continuous expansiorDg{r) in a Fourier —angles  ¢0<1) Eq. (34) is simplified to
integral overh may be required. Thus one has to prove thatdx~ 50[Kg><[:c§>< h]]/(khcosdg), which brings the well-
using the expansions over the local periodicity of atomicknown expression fote= — 2 sin(24g) 6.
planes gives results that are consistent with experiment and The data for the symmetric reflection are presented in Fig.
with other theories containing no such assumption. 5. The experiment and the theory are shown by dotted and

VI. EXPERIMENT
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FIG. 5. A comparison of the recursion matrix theory with ex- o 8'567claV '
periment for 400 symmetric reflection of an AlAs/GaAs superlat- eB-emisc=O.28°
tice. S and the numbers G;1, ... mark the substrate Bragg peak and 3 .
the different-order superlattice peaks, respectively. The inset shows ] F+1
the experimental setup with tH@20) Bartels monochromator. - jL_______;\ﬁ_____

= T T 1 T T ' 1
solid lines, respectively. The theoretical curve is calculated N 25_229\20 230
using the normal lattice  spacing mismatch B “misc
(Aa/a)pas=2.775< 10 2 in the AlAs layers, as measured .
in the precise experiment by Bocaéi al 8 for fully strained _ A2
AlAs on GaAs. The general match between the theory and 3 J T J AP N

- . . ] 8617eV
the experiment is good, although the theory overestimates 6.6 =0.20°
the reflectivity of the+ 2 SL peak. This can be explained by 0.1 E 048 B “misc
the effect & 4 A interface roughnesér by the presence of . +1
transition layers® 0.01] }\ J\ A2
In the symmetric case the RM calculations perfectly co- T T T

T T T T T T
0.2 0.4 0.6 0.8 1.0 1.2

e
[=]

incided with the calculations provided by the commercial
Philips software based on the Bartels, Hornstra, and Lobeek Incidence angle (Deg)
algorithm®* This fact is not surprising because the Bartels o _
recursion formulas are a particular case of the RM method, F'G: 6. Same as in Fig. 5 for 311 extremely asymmetric reflec-
Figure 6 presents the experimefabotted lines and the tion. The insert shows the experimental setup with the double-

theory(solid lines for the 311 coplanar extremely asymmet- crystal monochromator in the nondispersive 311 Bragg position.
The captions above each rocking curve indicate the asymmetry of

ric Bragg reflection fr(?m the .same sample. The successuv%e reflection at the respective wavelength of synchrotron radiation
curves correspond to increasing asymmetry of the Bragg re-

flection which is determined by the differenég— 6,,sc be- selected by the monochromator.

tween the kinematical Bragg angle and the miscut of the

(311) planes. The actual difference deviates from this valuedrazing x rays interact with a greater number of atomic
because of the refraction effects for incident x rays. Theplanes projected on their path, which results in a shorter
reflection asymmetry was altered by small tilts of the double-extinction depth.

crystal monochromator that caused small changes in the en- However, the general match between the theory and the
ergy of incident synchrotron radiation. The upper and theexperiment in the 311 case is worse than that in the 400 case.
lower three energies correspond to the kinematical Bragdf cannot be due to the larger angular range of this scan,
condition above and below the total-reflection critical anglebecausg«|=<0.02, so the approximation used in H¢) is

for the incident x rays, respectively. In the latter case thewell justified. Possible explanations for the mismatch can be
extinction length of x rays decreases and the reflectivity at greater footprint of incident beam at the sample surface in
the substrate peaR falls. asymmetric diffraction(the reflectivity is averaged over a

The theoretical curves are corrected for a geometrical facgreater surface argeaor a greater sensitivity of EAD to sur-
tor (the part of the diffracted intensity measured by the deface defects due to a smaller extinction length. Also, it might
tector was proportional to the incidence angle because of thiee due to the sensitivity of EAD to the fluctuations of mate-
large footprint of the incident x-ray beam at the sample sur+ial density and interface roughnedswhich affect the re-
face and added to the experimental background. fraction of grazing x rays.

As we see, the same theory with the same structure pa- We have found that an additional source of mismatch are
rameters explains both the symmetric and asymmetric x-raglispersion effects in then(—n) scheme applied to EAD.
diffraction experiments. It should be noted that the applicaThe (h,—n) scheme is dispersion free for conventional ge-
bility of Ewald’s expansion(2) to asymmetric diffraction is ometries, because the Bragg curves for different wavelengths
justified even better than for symmetric diffraction, becausepossess the same shape and they are simultaneously mea-
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FIG. 8. Rocking curves of the 400 symmetric reflection for ideal
Ge crystal and Ge crystal with linearly strained surface layer
[t=20 00G, a,=(1+nd)ay, wheren=1,...20000,5=5x 108,
ap=1.44 A is the interplanar spacing f¢400) in Ge]. The results
of the calculations completely coincide with that calculated by the
T ) Darwin method and presented in Ref. 65.

0.1

_»»»?hngr;ment gnder Bragg diffraction, which might provide direct informa-

--—-high-resolution experiment tion on the structure of x-ray standing wau@sSW). Recent
XSW  studies of  short-period (AlAs)3/(GaAs,
superlattice¥ constitute a step in this direction, but the fluo-
rescence yield was not interface specific.

0.01 5 VIl. COMPARISON WITH THE DARWIN THEORY
] . T . OF HETEROSTRUCTURE DIFFRACTION
0.2 04 0.6

Incidence angle (Deg) Since the assumption of the applicability of Ewald’s ex-
pansion to thin layers is the most critical point of our theory,
FIG. 7. Same as in Fig. 6 for the experimental curves measureit is important to compare our results with the Darwin-type
with an additional333) double-reflection monochromator reducing theory of heterostructure diffracticf’ﬁ,which contains no as-
the wavelength dispersion. sumptions of that kind, but instead directly sums up x rays
scattered from atoms in the individual atomic planes.
sured at the same deviations from the Bragg angle. Thus, Figure 8 presents the results of the RM method for an
dispersion effects in two crystals cancel each other. Thisdeal example discussed by Durbin and FdifiSihe reflec-
does not remain true for extremely asymmetric diffraction.tivity of symmetric 400 Bragg diffraction is calculated for a
One can see in Fig. 6 that when the incident energy idypothetical structure where a Ge crystal has a surface layer
changed by a small valutE/E=10"3, the curves of asym- with a linearly increasing lattice parameter. The layer con-
metric diffraction not only shift by the Bragg angle, but also sists of 20 000 atomic planes whose spa@pguccessively
considerably change their shape. In our case the shape of thecreases towards the surface as=(1+néd)a, where
Bragg curves depends on the angular distance between tie=1,...20000, §=5x 108, anda,=1.44 A is the interpla-
Bragg angle and the critical angle for total external reflec-nar spacing for400 planes in Ge. In order to apply our
tion. Therefore, the shape of the curves for different wavemethod, we formally subdivided the strained layer into
lengths is averaged im(—n) measurementghe effect is 20 000 sublayers and solved the dynamical diffraction prob-
proportional to the wavelength spread of incident x jays lem in each of them. Our resuéxactly coincides with the
In order to avoid the dispersion effect, we have carriedDarwin theory calculations, even though one cannot consider
out an asymmetric diffraction experiment with an additionalany periodicity at all in a layer consisting of just one atomic
four-reflection Si(333 monochromator selecting a narrow plane.
wavelength interval. The results are presented on Fig. 7. The coincidence of the two theories can be understood by
Clearly, the experiment now tends to be in much betteobserving that the dynamical diffraction solution automati-
agreement with the theory. cally reduces to the kinematical one for a very thin lajfer.
Thus, we have shown that our theory gives a good expla©ur method thus gives the kinematical scattering of each
nation for both symmetric and extremely asymmetric Braggplane, and sums up the multiple scattering exactly in the
reflections from a short-period superlattice containing 13 andame way as in the Darwin theory.
27 atomic layers of GaAs and AlAs, respectively. However, Retracing the calculation of superlattice diffraction dis-
further experiments, especially with thinner layers and x-raycussed in the experimental section, one can subdivide each
standing waves measurements are welcome. These could lagrer in the SL into sublayers corresponding to the atomic
x-ray fluorescence measurements of interface-located atonpdanes and apply both the Darwin and our theory. The result
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of our method does not change if the perfect layers are for-
mally subdivided into monolayers. On the other hand, it co-_Yacuum Layer Substrate
incides with the Darwin theory if the sublayers are atomic % 4
planes. Thus, our method gives the same reflectivity as thez B (a)
Darwin method with the advantage that with our approach’s
the scattering from thick layers is summed up analytically. 2 ,]
The above comparison is restricted by the symmetricg
Bragg case with ordinary incidence and exit angles. RecenthE ]
it has been proposed to extend the Darwin theory to grazings
incidence and/or exit by treating these cases as multiplex By Ty PR YRRy iy s
Bragg diffraction®® Then the Darwin theory will also require ' ' i ' -
matrix recursion formulas, indicating the fundamental simi- "
larities of the two approaches.
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VIII. X-RAY STANDING WAVES IN MULTILAYERS

The analysis carried out in previous sections has showrg

that the RM method gives correct reflectivities for x-ray dif- £ le—ss

fraction of multilayers. The aim of this section is to prove the = *Jo0s 1000 55 505 500 -05 0.0 05
identity between x-ray standing waves in our method and Depth (monolayers)

other theories. The main point is to understand the seeming
contradiction between x-ray waves “hooked” by atomic
planes in the Ewald expansidg) used in our method and
“unhooked” x-ray standing waves reported by both the Dar-

. . . . 84 .
v_vm an_d _the Tf’ikagl-Taupln theon@%. That is, the wave extrapolated into the layefa) at the substrate Bragg pedk) at the
field within a given layer as described by H@) must have  ,eriayer Bragg peak. The depth is measured in Ge monolayers. SS

the periodicity of the atomic planes in that layer, yet on€and sw indicate the surface shift due to stretching and the XSW
would not expect the total standing wave field to alwaysghitt, respectively.

follow the periodicity of the individual layers, especially
when it arises primarily from substrate diffraction, for ex- ,
ample. XSW in the layer:
Let us consider a symmetric Bragg reflection from a crys- I(2)~|e*" D3+ D2eP@]|2,
tal with a strained overlayer of thicknessas an example. (39)
Then, the intensity of XSW can be calculated as

FIG. 9. The structure of x-ray standing waves at 400 symmetric
Bragg reflection of Cu k&, radiation from a Ge crystal with 100
surface monolayers stretched Bya/a=10"2. Solid line presents
XSW for heterostructure and dashed line shows the substrate XSW

P(z)=x(u?—ul)z+h,(z—2) + ¢,
4 2
— i el 7z j + j @ih (Z—Z(U))+iz/)
(@) 121 e Don+ D™ Nl we find that the ternih, .z is cancelled and the XSW has the
periodicity of atomic planes in the substrate. However, if the
deviation from the Bragg condition for the layer is small, the
amplitudesD; andD3 become considerable and the atomic

; : - periodicity of layer may compete with that of the substrate.
respectively. Here the amplitud&d,, are given by Eqs(14) To justify this conclusion, we have calculated the XSW

and(24), andDr, are calculated according to Eff). Since for an overlayer consisting of 100 atomic planes on(G&0)

Din gnd Dj, are constants 'within the layers and the phasehyrate and the symmetric 400 reflection of GuKadia-
relation between them oscillates asily, the XSW corre- fion. The overlayer was assumed to be stretched out by
sponding to each wave mode has the periodicity of localy /5103 Figures %a) and 4b) present the calculated
atomic planes. However, there is. also an interference b%(SW as a function of the coordinate for the two angles
tween several wave moo!es with dlffereuj,t. (- 65)=6" and (6—60s)=—128 corresponding to the
Assume that we are interested in the XSW at the inCi-gyhstrate and the overlayer Bragg conditions, respectively

dence angle corresponding to the substrate Bragg peak, an@gB is the kinematical Bragg angleAt the substrate Bragg

the difference in lattice spacing of substrate and overlayer iéngle the XSW in the overlayer completely conforms with
large enough to provide a splitting of their Bragg peaks.he xsw in the substrate, while at the overlayer Bragg con-
Then, solving the dispersion equatit®) for the overlayer, ition the XSW starts with conformality near the substrate,
we obtain two roots corresponding to a weak coupling beynq then it gradually shifts towards the expanded crystal lat-
tween Dy and D},. In the first approximation, one root tce of the overlayer. Near the surface the shift with respect
ul~ %5+ xo gives the pair of waves{j=1, D3=0) being  to the XSW extended from the substrate is as large as about
the continuation of incident wave in the layer, and the other1/4 of the XSW period. However, we note that in the latter
root u?~— \/y02+)(0— ¥, gives the pair P3=0, DZ=1) case the relative intensity of the XSW is rather small. Stron-
corresponding to the continuation of the wave diffracted byger XSW correspond to thicker layers, but then the effect of
the substrate. Substituting these roots in the expression fé¢hooking” becomes evident.

where one usesn=1, 2Y=0, ¢,=0) and (=2, 2V =t,
¢$,=h,it) inside the layer £<t) and the substratezf>t),
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In summary, there is good agreement between our methaiheory can be applied independently for each of the Bragg
and the results of other theories concerning x-ray standingeaks with the assumption of uniformly strained lay®rs.
waves. Then, scattering from strains around dislocations and other

defects can be calculated as a perturb&fiosing the wave
IX. CONCLUSIONS fields given by the RM theory as a basis for the distorted
] ) wave Born approximatiofDWBA).

We have presented a recursion matrix theory and experi- The combination of the wave fields provided by the RM
mental results on x-ray diffraction from strained multilayer method and the DWBA can also be applied to the scattering
crystals. It has been shown that the RM theory overcomegom surface gratings, like, e.g., in the recent analysis of
the numerical problems of the former transfer matrix methogoyghness effects on GIB.The same approach can be used
and is generally applicable for ordinary as well as grazinggs well for the scattering from point defects.
angles of x rays. The RM method has been shown to reduce Fina”y’ some grazing_incidence X-ray Standing waves ex-

to the scalar recursion formulas by Bartels, Hornstra, angheriments from strained multilayers are in preparation, and
Lobeek* and by Parraff in cases of ordinarynongrazing  will be useful tests of the theory.

x-ray diffraction and grazing-incidence x-ray reflection far  The results of this study are aimed at stimulating the ap-

from the Bragg conditions, respectively. The results of theyjication of x-ray diffraction schemes with grazing incidence

Darwin theory for multilayer diffractioff have also been andjor exit to semiconductor structure research and surface
reproduced, and the behavior of x-ray standing waves haggience.

been demonstrated to be in agreement with the predictions of
the Darwin and the Takagi-Taupin theories.

The symmetric and extremely asymmetric Bragg diffrac-
tion experiments with strained AlAs/GaAs superlattice have
confirmed the RM theory. A dispersion effect has been found This work was supported by the Volkswagen Foundation,
in the (n,—n)diffraction scheme applied to the measure-Federal Republic of GermaryProject No 1/72430 One of
ments of extremely asymmetric Bragg diffraction and theus (S.A.S) is pleased to thank T. Ja¢National Institute of
necessity of an additional monochromator has been demorstandards, Gaithersbyrgv. Kaganer(Institute of Crystal-
strated in order to suppress this effect. lography, Moscow V. Kohn (Kurchatov Institute, Mos-

Extensions of the theory to relaxed multilayers containingcow), A. Macrander, and S. Sinb&rgonne National Labo-
misfit dislocations and lateral strains can be considered. Theatory) for stimulating discussions. We are grateful to R. Hey
relaxation is usually characterized by a considerable differ{Paul-Drude Institute, Berlinfor the preparation of AlAs/
ence in lateral lattice parameters, so that the Bragg peakSaAs superlattice, and to M. Schmidbaikiumboldt Uni-
from different layers are well resolved and can be treatedrersity of Berlin for providing the calculations with the
independently. Then, in the first approximation, the RMPhilips software.
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